Stochastic Subgradient Approach for Solving Linear Support Vector Machines – an Overview

نویسنده

  • Jan Rupnik
چکیده

This paper is an overview of a recent approach for solving linear support vector machines (SVMs), the PEGASOS algorithm. The algorithm is based on a technique called the stochastic subgradient descent and employs it for solving the optimization problem posed by the soft margin SVM a very popular classifier. We briefly introduce the SVM problem and one of the widely used solvers, SVM light, then describe the PEGASOS algorithm and present some experiments. We conclude that the algorithm efficiently discovers suboptimal solutions to large scale problems within a

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ASSET: Approximate Stochastic Subgradient Estimation Training for Support Vector Machines

Subgradient methods for SVMs have been successful in solving the primal formulation with linear kernels. The approach is extended here to nonlinear kernels, and the assumption of strong convexity of the objective is dropped, allowing an intercept term to be used in the classifier.

متن کامل

Approximate Stochastic Subgradient Estimation Training for Support Vector Machines

Subgradient algorithms for training support vector machines have been quite successful for solving largescale and online learning problems. However, they have been restricted to linear kernels and strongly convex formulations. This paper describes efficient subgradient approaches without such limitations. Our approaches make use of randomized low-dimensional approximations to nonlinear kernels,...

متن کامل

Stochastic Subgradient Methods

Stochastic subgradient methods play an important role in machine learning. We introduced the concepts of subgradient methods and stochastic subgradient methods in this project, discussed their convergence conditions as well as the strong and weak points against their competitors. We demonstrated the application of (stochastic) subgradient methods to machine learning with a running example of tr...

متن کامل

SOLVING FUZZY LINEAR PROGRAMMING PROBLEMS WITH LINEAR MEMBERSHIP FUNCTIONS-REVISITED

Recently, Gasimov and Yenilmez proposed an approach for solving two kinds of fuzzy linear programming (FLP) problems. Through the approach, each FLP problem is first defuzzified into an equivalent crisp problem which is non-linear and even non-convex. Then, the crisp problem is solved by the use of the modified subgradient method. In this paper we will have another look at the earlier defuzzifi...

متن کامل

A New Play-off Approach in League Championship Algorithm for Solving Large-Scale Support Vector Machine Problems

There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008